Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia.
نویسندگان
چکیده
Efforts to model pancreatic cancer in mice have focused on mimicking genetic changes found in the human disease, particularly the activating KRAS mutations that occur in pancreatic tumors and their putative precursors, pancreatic intraepithelial neoplasia (PanIN). Although activated mouse Kras mutations induce PanIN lesions similar to those of human, only a small minority of cells that express mutant Kras go on to form PanINs. The basis for this selective response is unknown, and it is similarly unknown what cell types in the mature pancreas actually contribute to PanINs. One clue comes from the fact that PanINs, unlike most cells in the adult pancreas, exhibit active Notch signaling. We hypothesize that Notch, which inhibits differentiation in the embryonic pancreas, contributes to PanIN formation by abrogating the normal differentiation program of tumor-initiating cells. Through conditional expression in the mouse pancreas, we find dramatic synergy between activated Notch and Kras in inducing PanIN formation. Furthermore, we find that Kras activation in mature acinar cells induces PanIN lesions identical to those seen upon ubiquitous Kras activation, and that Notch promotes both initiation and dysplastic progression of these acinar-derived PanINs, albeit short of invasive adenocarcinoma. At the cellular level, Notch/Kras coactivation promotes rapid reprogramming of acinar cells to a duct-like phenotype, providing an explanation for how a characteristically ductal tumor can arise from nonductal acinar cells.
منابع مشابه
Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia
The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) ...
متن کاملKLF4 Is Essential for Induction of Cellular Identity Change and Acinar-to-Ductal Reprogramming during Early Pancreatic Carcinogenesis.
Understanding the molecular mechanisms of tumor initiation has significant impact on early cancer detection and intervention. To define the role of KLF4 in pancreatic ductal adenocarcinoma (PDA) initiation, we used molecular biological analyses and mouse models of klf4 gain- and loss-of-function and mutant Kras. KLF4 is upregulated in and required for acinar-to-ductal metaplasia. Klf4 ablation ...
متن کاملYAP1 and TAZ Control Pancreatic Cancer Initiation in Mice by Direct Up-regulation of JAK–STAT3 Signaling
BACKGROUND & AIMS Pancreatitis is the most important risk factor for pancreatic ductal adenocarcinoma (PDAC). Pancreatitis predisposes to PDAC because it induces a process of acinar cell reprogramming known as acinar-to-ductal metaplasia (ADM)-a precursor of pancreatic intraepithelial neoplasia lesions that can progress to PDAC. Mutations in KRAS are found at the earliest stages of pancreatic t...
متن کاملThe acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma
Understanding the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) may provide therapeutic strategies for this deadly disease. Recently, we and others made the surprising finding that PDAC and its preinvasive precursors, pancreatic intraepithelial neoplasia (PanIN), arise via reprogramming of mature acinar cells. We therefore hypothesized that the master regulator of acinar...
متن کامل1 1 2 3 4 5 6 7 8 9 TITLE : The acinar differentiation determinant PTF 1 A inhibits initiation of pancreatic ductal
33 Understanding the initiation and progression of pancreatic ductal adenocarcinoma 34 (PDAC) may provide therapeutic strategies for this deadly disease. Recently, we and others 35 made the surprising finding that PDAC and its preinvasive precursors, pancreatic intraepithelial 36 neoplasia (PanIN), arise via reprogramming of mature acinar cells. We therefore hypothesized 37 that the master regu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 48 شماره
صفحات -
تاریخ انتشار 2008